0-Y从0到我不会,长大后再学习
序数
0-Y 分析
\[\begin{array}{l} () = 0\\ (1) = 1\\ (1,1) = 2\\ (1,2) = \omega\\ (1,2,1) = \omega+1\\ (1,2,1,2) = \omega2\\ (1,2,1,2,1,2) = \omega3\\ (1,2,1,2,1,2,\cdots) = (1,2,2) = \omega^2\\ (1,2,2,1,2) = \omega^2+\omega\\ (1,2,2,1,2,2) = \omega^2 2\\ (1,2,2,2) = \omega^3\\ (1,2,2,2,2) = \omega^4\\ (1,2,3) = (1,2,2,\cdots) = \omega^\omega\\ (1,2,3,2) = \omega^{\omega+1}\\ (1,2,3,2,2) = \omega^{\omega+2}\\ (1,2,3,2,3) = (1,2,3,2,2,\cdots) = \omega^{\omega 2}\\ (1,2,3,2,3,2) = \omega^{\omega 2+1}\\ (1,2,3,2,3,2,3) = \omega^{\omega 3}\\ (1,2,3,3) = \omega^{\omega^2}\\ (1,2,3,3,2,3) = \omega^{\omega^2+\omega}\\ (1,2,3,3,2,3,3) = \omega^{\omega^2 2}\\ (1,2,3,3,3) = \omega^{\omega^3}\\ (1,2,3,4) = \omega^{\omega^\omega}\\ (1,2,3,4,4) = \omega^{\omega^{\omega^2}}\\ (1,2,3,4,5) = \omega^{\omega^{\omega^\omega}}\\ (1,3) = (1,2,3,4,\cdots) = \varepsilon_{0} = \psi(\Omega)\\ (1,3,2) = (1,3,1,3,\cdots) = \varepsilon_0 \omega = \psi(\Omega+1)\\ (1,3,2,2) = \varepsilon_0 \omega^2 = \psi(\Omega+2)\\ (1,3,2,3) = \varepsilon_0 \omega^\omega = \psi(\Omega+\omega)\\ (1,3,2,3,4) = \varepsilon_0 \omega^{\omega^\omega} = \psi(\Omega+\omega^\omega)\\ (1,3,2,4) = \varepsilon_0^2 = \psi(\Omega+\psi(\Omega)\\ (1,3,2,4,2) = \varepsilon_0^2\omega = \psi(\Omega+\psi(\Omega)+1)\\ (1,3,2,4,2,3) = \varepsilon_0^2\omega^\omega = \psi(\Omega+\psi(\Omega)+\omega)\\ (1,3,2,4,2,4) = \varepsilon_0^3 = \psi(\Omega+\psi(\Omega)2)\\ (1,3,2,4,3) = \varepsilon_0^\omega = \psi(\Omega+\psi(\Omega+1))\\ \end{array}\] 本文由作者按照 CC BY 4.0 进行授权